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DETECTION OF FAULTY INSPECTION

by -
Norman L. Johnson Samuel Kotz :ﬂ
University of North Carolina University of Maryland
at Chapel Hill
ABSTRACT s
Some heuristic tests for detection of existence of errors in ’

inspection are proposed. Some of these tests are oh]y effective
if the sampling function ((samnle size)/(lot size)) is rather large,

and in all cases their application predicates special experiments to

provide the requisite data. Feasibility of these experiments will vary

according to specific circumstances.

Estimation of the probability of detection is discussed.
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1. INTRODUCTION

Recent papers (Johnson et al.)(1980), Johnson & Kotz (1981), Kotz &
Johnson (1982) have developed distributions of observed numbers of apparently
defective items when sample inspection is imperfect, resulting in
some defectives not being observed as such, while possibly some non-defectives
are described as ‘defective’' ("false positives"). Although these results
are of interest, some more practical problems arise when it is desired to
test whether inspection is faulty or to estimate the degree of imperfection.
It is the object of this paper to discuss some aspects of these problems,

keeping in mind possible practical constraints on availability of data.

2. SCOPE OF THE PROBLEM

It is clear that detection of faulty inspection will usually call for
special investigation; the possible forms ofvsuch investigation can be limited
by practical constraints. We will give a few possible modes of attack, but
will deal here with the very simple case in which random samples of size n
are taken from a lot of size N, containing X (unknown) defective items,
with constant probability, p for each defective item, that it will indeed be
classified as 'defective' on inspection, and with zero probability of false
positives. Even with these simplifying assumptions, detection of faulily
inspection will often be difficult; and there are clearly many possibilities
of complication. For example it may well be that the class 'defectives’' is
not homogeneous; some may be more, and some less easily detected. (Sampling
from such stratified populations is discussed in Johnson & Kotz (1981).)

If sampling is with replacement, it will not be possible to distinguish
faulty from perfect inspection merely on the basis of a succession of values
Z,.Zz.... of the total number (Z) of apparently defective items in routine

samples of size n. This is because in this case each Z will have a binomia)
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distribution with parameters n, pX/N and it will not be possible to separate

the unknowns p and X, and so not possible to test the hypothesis p = 1. Some
| discrimination is possible if sampling is without replacement, but this will
naturally be weak especially if the sampling fraction (f=n/N) or the propor-
| tion (8=X/N) of defective items is small. This problem is discussed in

Section 3. Further possibilities of specially designed experiments are

described and discussed in Section 4. Estimation of p, and yet more possible 3;
special designs or discussed in Section 5. ,ﬁ
i A

3. AN EXPERIMENT TO TEST FOR FAULTY INSPECTION
We will suppose 21,22,,,,2m (the number of items declared defectives in k
rﬁ
successive samples) mutually independent. This would require the return to 4
the population of all n items in cach sample before the next sample is chosen f
(even though for each sample, selection is withoug_replécement) but does not 1

call for identification of previously chosen items. We will suppose this
done, but note that it is evident that it will not always be possible - for

example, if testing is destructive. In such cases we would have dependence

among the Z's, arising from dependence among the corresponding numbers (Y) of

actual defective items in the samples - in fact

m oy -
Pr[j:](YJ--yJ-HX]

— e m
where (b b a b V" al/( nb,!). Ue will not discuss this case further here.
0’ "9000’ m j.n j

The distribution of each Z is the hypergeometric-binomial

& ; ;I.JA.._.' j_,_“_ﬁ_,.._ o o
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- = (N~ N-Xy /¥y, .2 y-2z
Pr(Z=z|X,p] = (1- ]
rizeziel = (7 (o TEAT RS (1)

(max(0,n-N+X) < 2 = min(n,X))

(Johnson et al. (1980)). The mean () and variance (02) of Z are

np X/N(= nps = Npfe) (2.1)
e T URE [

) =4
n

Q
[}

n{pe(i- p3)- ﬁf%—pze(l-ﬂ)}

- - - . - 1
N1 e B30 (O £01-p):,

More generally the r-th factorial moment of Z is

by (2 - etz = efzez-1). . (z-r+1)] = nfMx(P)r p(r) (2.3)

Formally our problem is that of testing the hypothesis Hozp =1, with X

(2.2)

as nuisance parameter. It is clear that H0 cannot be tested on the basis of a

single observed Z value. Even with a set of independent values Z]’ZZ""Zm’

(obtainable if each sample of m items is returned to the lot after inspection)

construction of a test, which is optimal in some reasonable way, presents

technical difficulties.

m
Since u is estimated unbiasedly by 7 = m! y Z;, and ol by S2
i=1
(m-])'] Z (Z Z) , it is natural to seek for some function of ,: and 5% which
i=1
depends only on p (and not on X) and then replace u by Z and 52 by 52. From
(2.2)
0= adyl 4 T -1 T Ny = 1-(N-1) T (n-1)p (2.4)
is such a function and so we consider using
- W= 527 e 0 o1y N (wen)z (3)

as a test criterion. The hypothesis Ho(p=l) corresponds to = (N-1)'](N-n);
for alternative hypotheses (p < 1), 9 > (N-l)'](N-n) -
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Using standard approximate ("statistical differentials") formulae, we have

EDW|X,p] = E[S?Z ~Vix,p] + NV (N-1) T (N-n)p X
2

~|Q

2__
a - cov(s®,7xp) | var(Zlg,P) 3+ 0 N1 T (N=n)y
oy u

2
%% (1 - m°]{|/B]% - (%)2}] + n'](N-1)°](N-n)u (see Meyman (1926))
. =1 ;042 c
=Q-m o(il—) (/31-3) (4.1)

Also
var(W|X,p) = var(Szf']|x,p)+2n'](N-l)'](N-n)cov(Szf'J, Z|X,p)
+ n'z(N-l)'Z(N-n)zvar(21x,p)

. gg[var(sgjx,p) . 2cov(Sz,Z1X,Q) + var(flx,p)]
. U2 071 oL “2

ol
L
+ 72N "2 (nen) 22

+ 207 (N-1) "V (Nem) [ -2

. ‘.,{1-.11“,1(/3] - %)}J

4
S Y rn _M=3 0. 9y2 Ty Vemon) (M /e
- m_f{z o1 - apE (“) + 207 (N-1)7(N-n) (¥ -1)
+ 07212 (N2 () (2.2)

where ¢B1, 32 are the moment ratios

/8y = o EL(Z-w310,); 2y = 07 EL(2-) 0] (5)

of the distribution (1).
When the null hypothesis (p = 1) is valid, this distribution is hyper-

ggpmep;jc with parameters (n,X,N); the appropriate formulae for JB] and 32 are

given in Johnson & Kotz (1969, p. 144). 1If N is large, so that

(N-an)/(N+b) < 1 - af, then

/& SRR g ¢ 34 oo DBFO-AR0 00T (6)
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where n' = n{1-f). We also have

u=n'o (7.1)

%= n'u(1-8) (7.2)

Inserting these values in (4.1) and (4.2) with p = 1, we obtain

ECu|x,13 < 7 + (1-6)(2;;69 - 4f0) . o)

2
var(ulx,1) o L8 p2m i) (£ (fe + 20-2)2-26(1-)-20(1-8)

- 16f(1-F)c(1-0) 1]

2(1-¢)%, -8
m-] n'‘me

9(f,0) (8.2)

is a number of magnitude about 1 (for exanple if f =8 =

2

where g(f,8)
=11 .2 2 1.1 Loy .2 = 125
9(f.6) = glg+3-2"-5-7-06~ %)= -2=-1g).

| —
-

4. QTHER APPROACHES

.As we have already noted the most stra%ghtforward way of testing the
hypothesis p = 1 would be by inspection of items known to be defective. Standard
methods could then be used - in this case the hypothesis would be rejected
as soon as any item was 'found' to be nondefective. The level of significance
of the test would be zero, and its power function (Y-pm) where m is the nuniber
of items to be inspected.

Such an inquiry may not be possible (for example when determination
of defectiveness entails destruction) but we may approach it by repeated
inspection of the same item (not knowing whether it is defective or not). If
any two inspections give different results, then we know that p. # 1 (since
we are here assuming that a nondefective item will always be classified
correctly). Of course, if the item is really nondefective this test will have

no discriminating power, since everv inspection will result in a correct
decision.
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Sometimes it way be possible to repeatl inspection of the same sample
(of size n) m times, but to he ablr to record only the total numbers
(TI’TZ""’Tm) of items deemed 'defective' at each inspection. This increases
the chance of including at least one truly defective item among those
inspected.

Here, again, if any two T's are unequal, then we know that HO is not
true (i.e. p < 1) since decision in regard to at least one item rust differ
in the two corresponding inspections. If there are really y defective iters
among the n subjected to inspection, the probability that departure of p from
1 will be detected, as a consequence of at least two of the T's differing is

I NGIES S
t=0
The overall probability, if the sample is chosen without replacement from a

population of size N containing just X defectives is

Y
IR RIh LN

where Y has a hypergeometric distribution with parameters (n,X,N).

5. ESTIMATION OF THE PROBABILITY OF DETLCTION (p)

So far we have considered only testing for the existence of errors in
inspection which lead to nondetection of defective items. If the existence of
such errors is established, it is natural to attenpt to estimate p. With
aata of the kind used in the test statistic I/ (Section 3) a natural estimator
would be (in view of (4.1)) (n-l)(N-])'](l-w), possibly with a bias correction.
For reasonable accuracy however, we need data of the kind described towards

the end of Section 4.

If we were in the fortunate position of having a number of items known to

be defective we could obtain a simple estimator {of p) by testing them repeatedly

and estimating p by the proportion of times a 'defective' decision is obtained.
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If this is not the case at the beginning of the investigation we might,

however, be in a position to exploit the fact that an item declared 'defective’

at any time must (according to our assumptions) be defective. Denoting by
Nj the number of items declared defective just j times in m trials (so that
N0 + Nptooot Nm =n, and ifp=1, N0 = n-y, N =y) a plausible but
specious argument might run as follows:

"For each item, we discard the first 'defective' decision and observe

m

the proportion of defective decision in the remaining l N sets of
J= =19

(m-1) trials. Since these are independent, the total number of

m
defectives in the trials has a binomial ((m-1) ) Nj,p) distribution,

and our estimate of p is unbiased, with an easily computed standara

deviation."

(It is not difficult to see that this will produce a negatively biased esti-
mator of p, because in all the tirals which are thrown away a decision of

‘defective' is reached. 1In fact the estimation is

r - 0
' IRLE
] L =1 3
m ] (J'])N S (9)
(m-1) 7 N, 9% N
i€ 3=
and its expected value is
1 m }
] P__ _11.) (10)
{E_T 1-(1-p)"

We could take notice of only those trials following the first 'defective’

décision; although this will not use all the information available, it does
lead to simple formulae. The observed proportion of 'defective’ decisions is
no an unbiased estimator of p; the (conditional) distribution of the number

of 'defective decisfon counted is binomial with parameters (total number of

fnspections included in count, p).
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Suppose, now, that we have m repeated inspections of a set of n iteus
{among which an unknown number y are defective) and have been able to record
the results of individual inspections (and not just total number of decisions
of 'defective’ for each inspection of the set of n items). The likelihood

function is

[y-non e 0o 0) B (i )'“’j}Nj
(1500 R L™ j:]\‘] p

m m
= y m m } %.JNJ. mY'-fl:jNJ
Y-+l N jgl (j) pr (1-p) (1)
(n-Ry =y = n)

m
where Ny = n - Y N, is the number of items which are not declared defective
j=1 m
is any of the m inspections. Note that (NO. Y ij) is a sufficient
. J‘:'l
statistic for (y,p)s ijn is the total number of 'defective' decisions. If

y were known, the maximum likelihood estimator of p would be
n R
ply) = (my)™! ¥ dn, (12)
=1

The corresponding maximized log likelihood would be
X n-NQ+1 m m
log L(y) = K + Y log (y-i) + (my- ) jN.)log{my- Y jN.)-my log my (13)
i=0 j=1" 3 j=1" 9
where K does not depend on y. We then seek to minimize (13) with respect to
y, subject ton >y 2 n - NO' Note that we are not primarily interested in

the value of y itself, but we need the value, y, maximizing (13) to calculate

-

the maximum likelihood estimator, p(y), of p.
m
A useful practical method is obtained by noting that for the Z Nj items
j=1
which we know to be defective, the numbers of times each item is declared

‘defective’ can be regarded as observed values of independent random variables

R




each having a binomial (m,p) distribution, truncated by omission of zero

values. Equating sample means and expected values gives the equation

-0 = 7 (nng) ! (14)

N
I

Wr~13

J
for an estimator of p. This estimator is, in fact, the conditional maximum
1ikelihood estimator of p, given Ng-

If we do require to get a estimator of y, we note that, with
P =7, E[JZ N =n - Noly,pl = y(1-0-9)™.
Replacing expected by actual values, we get the the estimator

y= min(n,[(n-NO){l-(1-5)'“}':,)= mv’n(n.[(mﬁ)'] E]ij]) (15)
j=

where [ ] denotes 'nearest integer to'.
As a numerical example suppose we test each of 50 (=n) items three (=)

times and obtain

0 ] 2 3
so that

3

) ij = 142415 = 18. Equation (14) gives

j=1
p3p -3+ =3 nThe = 67

where 52 - 35+ %} 0
Teading to p = 0.8545

From (15) , ¥y = { I_m‘e'ﬁ?] =7.

Note that the same values of P and ¥ would be obtained, whatever the value

of-g (_z,_?_) .
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